Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hiroyuki Ishida,* Takeo
 Fukunaga and Setsuo Kashino

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan

Correspondence e-mail:
ishidah@cc.okayama-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.046$
ωR factor $=0.087$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

The $1: 1$ complex of 4-chloro-3-nitrobenzoic acid and pyridazine

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClNO}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$, the two components are connected by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond. $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds connect the $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClNO}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$ units to afford a macrocycle with graph-set descriptor $R_{4}{ }^{4}(16)$; this ring is located on an inversion center.

Comment

The title compound, (I), was investigated as part of a study on $D-\mathrm{H} \cdots A$ hydrogen bonding ($D=\mathrm{N}, \mathrm{O}$ or $\mathrm{C} ; A=\mathrm{N}, \mathrm{O}$ or Cl) in chloro- and nitro-substituted benzoic acid-amine systems (Ishida et al., 2001a,b,c,d,e). In the crystal, molecules of pyridazine and 4-chloro-3-nitrobenzoic acid are held together by a short $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (Table 2), forming a $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClNO}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$ unit (Fig. 1).

(I)

All atoms of the unit except the O atoms of the nitro group are almost coplanar; the dihedral angle between the carboxyl group and the benzene ring is $1.1(3)^{\circ}$, and $8.53(11)^{\circ}$ between the planes of the pyridazine and benzene rings. The nitro group is twisted out of the benzene ring plane, with a dihedral angle of $50.27(13)^{\circ} . \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) between the pyridazine ring and the carboxyl group connect the $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClNO}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$ units, resulting in a centrosymmetric macrocycle with graph-set descriptor $R_{4}{ }^{4}(16)$ (Bernstein et al., 1995). These macrocyclic units are stacked along the a axis (Fig. 2). A short contact [Cl $\cdots 3^{\text {ii }}, 3.206$ (2) \AA; symmetry code: (ii) $\left.-\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z\right]$ is observed between macrocycles.

Experimental

Crystals of (I) were obtained by slow evaporation from a benzene solution of pyridazine with 4-chloro-3-nitrobenzoic acid in a molar ratio of $1: 1$.

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{ClNO}_{4} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$	$D_{x}=1.546 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=281.65$	
Monoclinic, $P 2_{\mathrm{d}} / n$	Mo K α radiation
$a=3.7659(4) \AA$	Cell parameters from 25
$b=27.486(6) \AA$	reflections
$c=11.7723(15) \AA$	$\theta=11.4-12.4^{\circ}$
$\beta=96.677(10)^{\circ}$	$\mu=0.33 \mathrm{~mm}^{-1}$
$V=1210.3(3) \AA^{\circ}$	$T=298 \mathrm{~K}$
$Z=4$	Prism, pale brown
	$0.35 \times 0.30 \times 0.25 \mathrm{~mm}$

Received 2 September 2002
Accepted 4 September 2002
Online 13 September 2002

Figure 1
ORTEP-3 (Farrugia, 1997) drawing of (I) with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level. An $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond is indicated by a dashed line.

Data collection

Rigaku AFC-5R diffractometer	$R_{\text {int }}=0.022$
$\omega-2 \theta$ scans	$\theta_{\max }=27.5^{\circ}$
Absorption correction: ψ scan	$h=-1 \rightarrow 4$
\quad (North et al., 1968$)$	$k=0 \rightarrow 35$
$\quad T_{\text {min }}=0.873, T_{\max }=0.921$	$l=-15 \rightarrow 15$
400 measured reflections	3 standard reflections
2767 independent reflections	every 97 reflections
1582 reflections with $I>2 \sigma(I)$	intensity decay: 1.1%
Refinement	
Refinement on F^{2}	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$	$(\Delta / \sigma)_{\max }=0.01$
$w R\left(F^{2}\right)=0.087$	$\Delta \rho_{\max }=0.4 \mathrm{e} \AA^{-3}$
$S=1.19$	$\Delta \rho_{\min }=-0.42 \mathrm{e} \AA^{-3}$
2767 reflections	Extinction correction: Zachariasen
205 parameters	(196)
All H-atom parameters refined	Extinction coefficient: $9.3(16) \times$
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00013\left\|F_{o}\right\|^{2}\right]$	10^{-7}

Table 1
Selected geometric parameters (\AA).

$\mathrm{Cl}-\mathrm{C} 4$	$1.725(2)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.474(3)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.307(3)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.333(3)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.206(3)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.309(3)$
$\mathrm{O} 3-\mathrm{N} 1$	$1.218(3)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.315(3)$
$\mathrm{O} 4-\mathrm{N} 1$	$1.209(3)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.499(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 4 \cdots \mathrm{~N} 2$	$0.89(3)$	$1.74(3)$	$2.629(3)$	$172(3)$
$\mathrm{C} 10-\mathrm{H} 7 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.91(2)$	$2.55(2)$	$3.310(3)$	$142.4(18)$

Symmetry code: (i) $2-x, 1-y, 2-z$.
H atoms were found in difference Fourier maps and refined isotropically. Refined distances: $\mathrm{C}-\mathrm{H}=0.89$ (3) -0.95 (2) and $\mathrm{O}-\mathrm{H}$ $=0.89$ (3) Å.

Figure 2
Packing diagram, showing the macrocycle formed via $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds indicated by dashed and dotted lines, respectively [symmetry code: (i) $2-x, 1-y, 2-z$].

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: teXsan for Windows (Molecular Structure Corporation, 1997-1999); program(s) used to solve structure: SIR92 (Altomare et al. 1993); program(s) used to refine structure: teXsan for Windows; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: teXsan for Windows.

X-ray measurements were made at the X-ray Laboratory of Okayama University.

References

Altomare, A., Cascarano, G., Giacovazzo, C., \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ishida, H., Rahman, B. \& Kashino, S. (2001a). Acta Cryst. C57, 876-879.
Ishida, H., Rahman, B. \& Kashino, S. (2001b). Acta Cryst. C57, 1450-1453.
Ishida, H., Rahman, B. \& Kashino, S. (2001c). Acta Cryst. E57, o627-o629.
Ishida, H., Rahman, B. \& Kashino, S. (2001d). Acta Cryst. E57, o630-o632.
Ishida, H., Rahman, B. \& Kashino, S. (2001e). Acta Cryst. E57, o744-o745.
Molecular Structure Corporation (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997-1999). teXsan for Windows. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

